Python 2.X vs 3.X

A LITTLE HISTORY OF PYTHON 2 VS 3

* Python 2.0 was first released in 2000. Its latest version, 2.7, was
released in 2010.

* Python 3.0 was released in 2008

* In 2016, 71.9% of projects used Python 2.7, but by 2017, it had fallen
to 63.7%..

Obvious ..

* 1. PYTHON 2 IS LEGACY, PYTHON 3 IS THE FUTURE.

* 2. PYTHON 2 AND PYTHON 3 HAVE DIFFERENT (SOMETIMES
INCOMPATIBLE) LIBRARIES

* 3. THERE IS BETTER UNICODE SUPPORT IN PYTHON 3 /N PYTHON 3,
TEXT STRINGS ARE UNICODE BY DEFAULT. IN PYTHON 2, STRINGS ARE STORED AS
ASCII BY DEFAULT-YOU HAVE TO ADD A “U” IF YOU WANT TO STORE STRINGS AS
UNICODE IN PYTHON 2.X.

* 4. PYTHON 3 HAS IMPROVED INTEGER DIVISION

* 5. THE TWO VERSIONS HAVE DIFFERENT PRINT STATEMENT
SYNTAXES

Important differences

* Division operator
e print function

* Unicode

* Xrange

* Error Handling
 future_module

Division operator in Python 2.7

Python 2.7.16 (v2.7.16:413a049145e, Mar 2 2019, 14:32:10)
[GCC 4.2.1 Compatible Apple LLWM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
print 5/2
2
print -5/2
-3

Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license()" for more information.
- (5/2)

2.5

(-5/2)

-2.5

Python 2.7.16 (v2.7.16:413a49145e, Mar 2 2019, 14:32:10)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>> print 5/2

2

>>> print -5/2

-3

>>> print 5.0/2

2.5

>>> print -5.0/2

-2.5

>>> print 5//2

2

>>> print -5//2

-3

>>> print 5.0//2

2.0

>>> print -5.0//2

-3.0

>>>|

Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43)
[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits"” or "license()" for more information.
>>> print (5/2)

2.5

>>> print(-5/2)

-2.5

>>> print (5.0/2)

2.5

>>> print(-5.0/2)

-2.5

>>> print (5//2)

2

>>> print (-5//2)

-3

>>> print(5.0//2)

2.0

>>> print (-5.0//2)

-3.0

>>>|

orint function

Python 2.7.16 (v2.7.16:413049145e, Mar 2 2019, 14:32:10)
[GCC 4.2.1 Compatible Apple LLWM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>> print 'DigiiMento Education’
DigiiMento Education
>>> print ('DigiiMento Education')
DigiiMento Education
>> print ("DigiiMento Education")
DigiiMento Education

Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43)
[Clang 6.0 (clang-6®®.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>> print 'DigiiMento Educatlonﬂ
SyntaxError Missing parentheses in call to 'print'. Did you mean print('DigiiMento Ed
ucation')?
>>> print ('DigiiMento Education')
DigiiMento Education
. ("DigiiMento Education")
DlgllMento Education

Print Single and Multiple variable in Python

>> print 1

SSSEDRERE 1,2
12

>>> print (1,2)

(1, 2)
There is no difference between code 1 and code 2 in case of single variable in Python 2.X, but in
case of multiple variables, variable with brackets -() is treated as “tuple”.

For multiple variable:
*“print variable” prints the variables without any brackets ‘()" and splitted by a space
“print(variable)” prints the variables with brackets ‘()’ and splitted by a coma ‘,” so it’s treated as a

tuple.

In Python 3.0, the print statement is changed to print() function.
Below are equivalent codes in Python 3.0.

nrint (1)

print ((1))

rint (1,2)

= ((1,2))
(1 2)

In Python 2, implicit str type is ASCII. But in
Python 3.x implicit str type is Unicode.

Python 2.7.16 (v2.7.16:413a49145e, Mar 2 2019, 14:32:10)

[GCC 4.2.1 Compatible Apple LLWM 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license()" for more information.
>>> print (type('default String'))

<type 'str'>

>> print (type(b'this is a String'))
<type 'str'>

Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license()" for more information.
(('default String'))

<class 'str'>
((b'This 1s a String'))

<class 'bytes'>

xrange:

xrange() of Python 2.x doesn’t exist in Python 3.x. In Python 2.x, range

returns a list i.e. range(3) returns [0, 1, 2] while xrange returns a xrange

object i. e., xrange(3) returns iterator object which work similar to Java
iterator and generates number when needed.

e
Python 2.7.16 (v2.7.16:413049145e, Mar 2 2019, 14:32:10)

[GCC 4.2.1 Compatible Apple LLWM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits"” or "license()" for more information.
>>> for x in (1, 5):

print(x)

S~ W N

>>> for x 1in (1, 5):
print(x),

1234

Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright"”, "credits" or "license()" for more information.
>>> for x in xrange(1l, 5):
print(x)

Traceback (most recent call last):
File "<pyshell#1>", 1line 1, in <module>
for x in xrange(l, 5):
NameError: name 'xrange' is not defined
>>> for x in xrange(l, 5):
print(x),

Traceback (most recent call last):
File "<pyshell#3>", 1line 1, in <module>
for x in xrange(l, 5):
NameError: name 'xrange' is not defined

Error Handling:

There is a small change in error handling in both versions. In python
3.x, ‘as’ keyword is required.

Python 2.7.16 (v2.7.16:413a49145e, Mar 2 2019, 14:32:10)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>> try.:
trying_to_check_error
except Namekrror, err:
print err, 'Error Caused'’

name 'trying_to_check_error' is not defined Error Caused
>>> try:

trying_to_check_error
except NameError as err:

print err, 'Error Caused'’

name 'trying_to_check_error' is not defined Error Caused

Python 3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>> try:
trying_to_check_error
except NameErrorI (] ol g
print (err, 'Error Caused')

SyntaxError: invalid syntax
>>> try:
trying_to_check_error
except NameError as err:
print (err, 'Error Caused')

name 'trying_to_check_error' is not defined Error Caused

