(.
OiI0i
MENTO

EDUCATING ON GO...

i

~ T Y

e L/ 7,
7 &

%
W ﬂ/////
.{;:/ "//;/%

<« C @ https://digiimento.com

Have any question ? & +919821876104/06 & admin@gatelectures.com © +919821876104 LAST DAY: Special Discount on 1 Year & 6 Months course. m

Home & Courses v & AboutUs @M Videos M Classroom Program v Downloads @ Contact & Login (Q)

"i.*w)
getelectures.com

#Think

Trust of 1 Lakh + Students. Ratings: f *¥rxH L

Celebrating more than 1 (akh Followere on Social Media . S YA ANy 4.8

N &

(58s)
—

three ways of variable declaration:

e et
* const
e Var

* let and const behave exactly the same way in terms of Lexical
Environments.

* But var is a very different, it originates from very old times. It’s
generally not used in modern scripts, but still lurks in the old ones

* Credits - https://javascript.info

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Variables

* To create a variable in JavaScript, we need to use the let keyword.

* The statement below creates (in other words: declares or defines) a
variable with the name “message”:

let message

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

* Now we can put some data into it by using the assignment
operator =:

let message;

message = 'Hello'; // store the string

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Now we can put some data into it by using the assignment operator =:

<!DOCTYPE html>
<html>
<body>
<script>
'use strict';
let message;

message = 'Hello!’;
alert(message);
</script>
</body>
</html>

Get Access fo Complete Video Lectures

-~

| javascript.info says

7 Hello!

Call : WhatsApp 9821876104/02

email us at: admin@gatelectures.com

Variable naming

* There are two limitations for a variable name in JavaScript:
* The name must contain only letters, digits, symbols S and _.

* The first character must not be a digit.
 Valid names, for instance:

let userName
let test123

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

<html>

<body>
<script>
'use strict’;
let $ = 1; // declared a variable with the name "$"
LEE . = 2, // and now a variable with the name "_"

alert($ + _); // 3
</script>
</body>

</html>

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Examples of incorrect variable names:

1
2
3

€ cCase matters

let 1a; // cannot start with a digit

let my-name; // a hyphen '=' is not allowed in the name

Variables named apple and AppLE - are two different variables.

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Reserved names

There is a list of reserved words, which cannot be used as variable names, because they are used by the language
itself.

For example, words let, class, return, function are reserved.

The code below gives a syntax error:

1 1let let =5; // can't name a variable "let", error!
2 let return =5; // also can't name it "return", error!

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

An assignment without use strict

Normally, we need to define a variable before using it. But in the old times, it was technically possible to create a
variable by a mere assignment of the value, without let . This still works now if we don’t put use strict. The
behavior is kept for compatibility with old scripts.

—

// note: no "use strict" in this example

num = 5; // the variable "num" 1is created if didn't exist

S W N

alert(num); // 5

un

That’s a bad practice, it gives an error in the strict mode:

"use strict";

num = 5; // error: num is not defined

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Constants

To declare a constant (unchanging) variable, one can use const instead of let :

1 const myBirthday = '18.04.1982';

Variables declared using const are called “constants”. They cannot be changed. An attempt to do it would cause an

error:

const myBirthday = '18.04.1982"';

N =

myBirthday = '01.01.2001'; // error, can't reassign the constant!

(a
@

When a programmer is sure that the variable should never change, they can use const to guarantee it, and also to

clearly show that fact to everyone.

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Uppercase constants

There is a widespread practice to use constants as aliases for difficult-to-remember values that are known prior to
execution.

Such constants are named using capital letters and underscores.

Like this:

l const COLOR_RED = "#F00";
2 const COLOR_GREEN = "#0F0Q";
, const COLOR_BLUE = "#00F";
4 const COLOR_ORANGE = "#FF7F00'";

6 // ...when we need to pick a color
/ let color = COLOR_ORANGE;
8 alert(color); // #FF7F00

Benefits:

® COLOR_ORANGE is much easier to remember than "#FF7F00" .
® |tis much easier to mistype in "#FF7F00'" thanin COLOR_ORANGE .
e When reading the code, COLOR_ORANGE is much more meaningful than #FF7FQ0 .

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Being a “constant” just means that the value never changes. But there are constants that are known prior to execution
(like a hexadecimal value for red), and there are those that are calculated in run-time, during the execution, but do not

change after the assignment.

For instance:

1 const pagelLoadTime = /*x time taken by a webpage to load x/;

The value of pagelLoadTime is not known prior to the page load, so it's named normally. But it's still a constant, because
it doesn’t change after assignment.

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

© var instead of let

In older scripts you may also find another keyword: var instead of let:

1 var message = 'Hello';

The var keyword is almost the same as let . It also declares a variable, but in a slightly different, “old-school”
fashion.

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

From the first sight, var behaves similar to let . That is, declares a variable:

1
)
L
4

function sayHi() {

&
f

Yy DN

sayHi();

0 ~J

O

var phrase = "Hello"; // local variable,

alert(phrase); // Hello

var' instead of "let"

9 alert(phrase); // Error, phrase is not defined

...But here are the differences.

Get Access fo Complete Video Lectures

Call : WhatsApp 9821876104/02

email us at: admin@gatelectures.com

“var" has no block scope

var variables are either function-wide or global, they are visible through blocks.

For instance:

1 if (true) {

2 var test = true; // use "var" instead of "let"
ol

4

5 alert(test); // true, the variable lives after if

If we used let test on the 2nd line, then it wouldn’t be visible to alert . But var ignores code blocks, so we've got a

global test.

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

The same thing for loops: var cannot be block- or loop-local:

for (var i = 0; i < 10; i++) {
//
1

W N =

I’
I

alert(i); // 10, "i" is visible after loop,

N

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02

it's a global variable

email us at: admin@gatelectures.com

If a code block is inside a function, then var becomes a function-level variable:

1
)

function sayHi() {
if (true) A
var phrase = "Hello";

1
J

L

S

on

6 alert(phrase); // works

7

9 sayHi();

10 alert(phrase); // Error: phrase is not defined

As we can see, var pierces through 1f, for or other code blocks. That's because a long time ago in JavaScript blocks
had no Lexical Environments. And var is a reminiscence of that.

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

“var" are processed at the function start

var declarations are processed when the function starts (or script starts for globals).

In other words, var variables are defined from the beginning of the function, no matter where the definition is (assuming
that the definition is not in the nested function).

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

So this code:

1 function sayHi() {
2 phrase = "Hello";
4 alert(phrase);

§)

var phrase;

~J

...Is technically the same as this (moved var phrase above):

1 function sayHi() {
var phrase;

NJ

)

4 phrase = "Hello";

J OY N

alert(phrase);

\l.
J

Get Access to Complete Video Lectures

Call : WhatsApp 9821876104/02

email us at: admin@gatelectures.com

...0r even as this (remember, code blocks are ignhored):

[S}

function sayHi() {

2 phrase = "Hello"; // (%)
4 if (false) A
5 var phrase;

1
J

(@)

8 alert(phrase);

People also call such behavior “hoisting” (raising), because all var are “hoisted” (raised) to the top of the function.

So in the example above, if (false) branch never executes, but that doesn’t matter. The var inside it is processed in
the beginning of the function, so at the moment of (%) the variable exists.

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Declarations are hoisted, but assignments are not.

<html>

<body>
<script>
'use strict’;
function sayHi() {
alert(phrase);

var phrase = "Hello";

¥

sayH1();
Lfscript>
</body>

</html>

Get Access fo Complete Video Lectures

-

® ® o | Anembedded page at run.plnkr.co says

| undefined

-

Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

_ 539

'elo" as two actions in it:

Z S
j, » - > 0 /. ; ' 8

* The line var phrase ="'

* Variable declaration var
* Variable assighment =.

* The declaration is processed at the start of function execution (“hoisted”),
but the assignment always works at the place where it appears

<body>
<script>
‘use strict’;
function sayHi() {
var phrase; // declaration works at the start...

alert(phrase); // undefined

phrase = "Hello"; // ...assignment - when the execution reaches it.

}

sayHi();
</script>
</body>

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

Get Access to Complete Video Lectures Call : WhatsApp 9821876104/02 email us at: admin@gatelectures.com

