

COMPUTER neuvories

HIMANSHU KAUSHIK

Position of IP and other network-layer protocols in TCP/IP protocol suite

- IPv4 is an unreliable datagram protocol—a best-effort delivery service.
- The term best-effort means that IPv4 packets can be corrupted, be lost, arrive out of order, or be delayed, and may create congestion for the network.
- If reliability is important, IPv4 must be paired with a reliable transport-layer protocol such as TCP

Example of Best Effort Delivery Service

- The post office does its best to deliver the regular mail but does not always succeed.
- If an unregistered letter is lost or damaged, it is up to the sender or would-be recipient to discover this.
- The post office itself does not keep track of every letter and cannot notify a sender of loss or damage of one

• IPv4 is also a connectionless protocol that uses the datagram approach.

- Packets used by the IP are called datagrams .
- A datagram is a variable-length packet consisting of two parts: header and payload (data).
- The header is 20 to 60 bytes in length and contains information essential to routing and delivery.

Datagrams

Packet at various Layers

20-60 B

20– 20–60 bytes			5,535 bytes	→	VER: version number HLEN: header length	
	Header		Payload	byte: 8 bits		
	a. IP datagram			Flags D M		
_	0 4		8 16		31	
	VER 4 bits	HLEN 4 bits	Service type 8 bits		Total length 16 bits	
		Identification 16 bits		Flags 3 bits	Fragmentation offset 13 bits	
	Time-to-live 8 bits		Protocol 8 bits		Header checksum 16 bits	
	Source IP address (32 bits)					
Destination IP address (32 bits)					32 bits)	
	, Options + padding (0 to 40 bytes)				ng	

b. Header

Version Number Field

The 4-bit version number (VER) field defines the version of the IPv4 protocol, which, obviously, has the value of 4.

- The 4-bit header length (HLEN) field defines the total length of the datagram header in 4byte words.
- The receiver needs to multiply the value of this field by 4 to find the total length.

b. Header

- ✓ This 16-bit field defines the total length (header plus data) of the IP datagram in bytes.
- ✓ This field helps the receiving device to know when the packet has completely arrived.

Length of Data in IP Datagram

Length of data = total length – (HLEN) $\times 4$

Why we need Total Length field

- However, there are occasions in which the datagram is not the only thing encapsulated in a frame; it may be that padding has been added.
- For example, the Ethernet protocol has a minimum and maximum restriction on the size of data that can be encapsulated in a frame (46 to 1500 bytes).
- If the size of an IPv4 datagram is less than 46 bytes, some padding will be added to meet this requirement.
- In this case, when a machine decapsulates the datagram, it needs to check the total length field to determine how much is really data and how much is padding.

Identification, Flags, and Fragmentation Offset

Flags a. IP datagram D 8 **16** 31 0 **HLEN** Service type Total length VER 8 bits 16 bits 4 bits 4 hits Identification Fragmentation offset Flags 13 bits 16 bits 3 bits Header checksum lime-to-live Protocol 16 bits 8 bits 8 bits Source IP address (32 bits) Destination IP address (32 bits) Options + padding (0 to 40 bytes)

b. Header

Fragmentation

- A datagram can travel through different networks. Each router decapsulates the IP datagram from the frame it receives, processes it, and then encapsulates it in another frame.
- For example, if a router connects a LAN to a WAN, it receives a frame in the LAN format and sends a frame in the WAN format.

Fragmentation

Maximum Transfer Unit (MTU)

- Each link-layer protocol has its own frame format.
- One of the features of each format is the maximum size of the payload that can be encapsulated.
- In other words, when a datagram is encapsulated in a frame, the total size of the datagram must be less than this maximum size,

MTU: Maximum size of frame payload

Fragmentation

- The value of the MTU differs from one physical network protocol to another.
- For example, the value for a LAN is normally 1500 bytes, but for a WAN it can be larger or smaller.
- we must divide the datagram to make it possible for it to pass through these networks. This is called fragmentation

Fragmented Datagram and Reassembly

- When a datagram is fragmented, each fragment has its own header.
- A fragmented datagram may itself be fragmented if it encounters a network with an even smaller MTU.
- A datagram can be fragmented by the source host or any router in the path.
- The reassembly of the datagram, however, is done only by the destination host, because each fragment becomes an independent datagram.
- The fragmented datagram can travel through different routes

Fragmentation

Fields Related to Fragmentation - Identification

- Identification + source IP address = uniquely define a datagram.
- When a datagram is fragmented, the value in the identification field is copied into all fragments. .
- The identification number helps the destination in reassembling the datagram.
- It knows that all fragments having the same identification value should be assembled into one datagram.

Fields Related to Fragmentation - Flags

The 3-bit flags field defines three flags.

- The leftmost bit is reserved (not used).
- The second bit (D bit) is called the do not fragment bit.
- The **third bit** (M bit) is called the more fragment bit.

fragmentation offset

- The 13-bit fragmentation offset field shows the relative position of this fragment with respect to the whole datagram.
- It is the offset of the data in the original datagram measured in units of 8 bytes.