




The modern mode, "use strict"

• For a long time JavaScript was evolving without compatibility issues. 
New features were added to the language, but the old functionality 
did not change.

• That had the benefit of never breaking existing code. But the 
downside was that any mistake or an imperfect decision made by 
JavaScript creators got stuck in the language forever.

• It had been so until 2009 when ECMAScript 5 (ES5) appeared. It 
added new features to the language and modified some of the 
existing ones. To keep the old code working, most modifications are 
off by default. One needs to enable them explicitly with a special 
directive "use strict”

Reference https://javascript.info/strict-mode



The Modern Java Script Markups
The <script> tag has a few attributes that are rarely used nowadays, but 
we can find them in old code:

The old standard HTML4 required a script to have a type. Usually it was 
type="text/javascript". It’s not required any more. 



The Modern Standard

• The modern standard totally changed the meaning of the Script 
attribute. 

• Now it can be used for Javascript modules.

• The language attribute: <script language=…>

• This attribute was meant to show the language of the script. As of 
now, this attribute makes no sense, the language is JavaScript by 
default. No need to use it.



External scripts

• As a rule, only the simplest scripts are put into HTML. More complex 
ones reside in separate files.

• The benefit of a separate file is that the browser will download it and 
then store it in its cache.

• After this, other pages that want the same script will take it from the 
cache instead of downloading it. So the file is actually downloaded 
only once.

• That saves traffic and makes pages faster.



If src is set, the script content is ignored.

A single <script> tag can’t have both the src attribute and the code 
inside.

This won’t work:



The example can be split into two scripts to work:



“use strict”

• The directive looks like a string: "use 
strict" or 'use strict'. When it is 
located on the top of the script, then 
the whole script works the “modern” 
way.

• Looking ahead let’s just note 
that "use strict" can be put at the 
start of a function (most kinds of 
functions) instead of the whole 
script. Then strict mode is enabled in 
that function only. But usually people 
use it for the whole script.



Ensure that “use strict” is at the top

Looking ahead let’s just note that "use strict" can be put at the start of a 
function (most kinds of functions) instead of the whole script. Then strict 
mode is enabled in that function only. But usually people use it for the 
whole script.



Ensure that “use strict” is at the top

• Please make sure that "use strict" is on the top of the script, otherwise 
the strict mode may not be enabled.

• There is no strict mode here

Only comments may appear above "use strict".

There’s no way to cancel use strict
There is no directive "no use strict" or alike, that would return the old behavior.

Once we enter the strict mode, there’s no return.



The differences of "use strict" versus the “default” mode

• At this point in time it’s enough to know about it in general:

• The "use strict" directive switches the engine to the “modern” mode, 
changing the behaviour of some built-in features. We’ll see the details 
as we study.

• The strict mode is enabled by "use strict" at the top. Also there are 
several language features like “classes” and “modules” that enable 
strict mode automatically.

• The strict mode is supported by all modern browsers.

• It’s always recommended to start scripts with "use strict". All 
examples in this tutorial assume so, unless (very rarely) specified 
otherwise.




