

Comparisons

• Many comparison operators we know from maths:

• Greater/less than: a > b, a < b.

• Greater/less than or equals: a >= b, a <= b.

• Equality check is written as a == b (please note the double equation
sign =. A single symbol a = b would mean an assignment).

• Not equals. In maths the notation is ≠, in JavaScript it’s written as an
assignment with an exclamation sign before it: a != b.

Boolean is the result

• Just as all other operators, a comparison returns a value. The value is
of the boolean type.

• true – means “yes”, “correct” or “the truth”.

• false – means “no”, “wrong” or “a lie”.

String comparison
• To see which string is greater than the other, the so-called “dictionary” or

“lexicographical” order is used.
• In other words, strings are compared letter-by-letter.

The algorithm to compare two strings is simple:
1. Compare first characters of both strings.
2. If the first one is greater(or less), then the first string is greater(or less) than the second.

We’re done.
3. Otherwise if first characters are equal, compare the second characters the same way.
4. Repeat until the end of any string.
5. If both strings ended simultaneously, then they are equal. Otherwise the longer string is

greater.

• In the example, the comparison 'Z' >
'A' gets the result at the first step.

• Strings "Glow" and "Glee" are
compared character-by-character:

• G is the same as G.

• l is the same as l.

• o is greater than e. Stop here. The
first string is greater.

• The comparison algorithm given is roughly equivalent to the one used
in book dictionaries or phone books. But it’s not exactly the same.

• For instance, case matters. A capital letter "A" is not equal to the
lowercase "a". Which one is greater? Actually, the lowercase "a" is.
Why? Because the lowercase character has a greater index in the
internal encoding table (Unicode).

consequence

Strict equality

• That’s because operands of different types are converted to a number
by the equality operator ==. An empty string, just like false, becomes
a zero.

What to do if we’d like to differentiate 0 from false?
• In other words, if a and b are

of different types, then a ===
b immediately
returns false without an
attempt to convert them.

• There also exists a “strict
non-equality” operator !==,
as an analogy for !=.

• The strict equality check
operator is a bit longer to
write, but makes it obvious
what’s going on and leaves
less space for errors.

Comparison with null and undefined
• For a strict equality check ===These values are different, because each

of them belongs to a separate type of its own.

• For a non-strict check ==There’s a special rule. These two are a “sweet
couple”: they equal each other (in the sense of ==), but not any other
value.

• For maths and other comparisons < > <= >=Values null/undefined are
converted to a number: null becomes 0, while undefined becomes NaN.

• The reason is that an equality
check == and comparisons > < >=
<= work differently. Comparisons
convert null to a number, hence
treat it as 0. That’s why (3) null
>= 0 is true and (1) null > 0 is
false.

• On the other hand, the equality
check == for undefined and null i
s defined such that, without any
conversions, they equal each
other and don’t equal anything
else. That’s why (2) null == 0 is
false.

An incomparable undefined

• Comparisons (1) and (2) return false because undefined gets
converted to NaN. And NaN is a special numeric value which
returns false for all comparisons.

• The equality check (3) returns false, because undefined only
equals null and no other value.

Summary

• Comparison operators return a logical value.

• Strings are compared letter-by-letter in the “dictionary” order.

• When values of different types are compared, they get converted to
numbers (with the exclusion of a strict equality check).

• Values null and undefined equal == each other and do not equal any
other value.

• Be careful when using comparisons like > or < with variables that can
occasionally be null/undefined. Making a separate check
for null/undefined is a good idea.

✓console.log("20" > 10); //true, String "20" is converted to Number 20

✓console.log('01' == 1); // true, String '01' is converted to Number 01

✓console.log(null < 10); //true, because null is converted to 0 in Comparison Operators, Hence 0 < 10 is true

✓console.log(null > 0); //false, here null is converted to 0 in Comparison Operators, Hence 0 > 0 is false

✓console.log(undefined <= 0); //fasle, undefined is converted to NaN in Comparison operators hence Nan <= 0 is
false

✓console.log(undefined == 0); //false, undefined is not converted to NaN in double Equality Comparison operators,
it remains the same. Hence Undefined == 0 is false

✓console.log(undefined == 1); //false, undefined is not converted to NaN in double Equality Comparison operators.
Hence undefined == 1 is false

✓console.log(null == 0); //false, null is not converted to 0 when double equality operator is used hence null == 0 is
false

✓console.log(null == undefined); //true Sweet Couple

✓console.log(true == 1); //true, true is converted to a number 1,

✓console.log(false == 0); //true, false is converted to zero when using comparison operators

✓console.log(0 == false); //true, false is converted to zero

✓console.log('' == false); //true, false is converted to zero and empty string is converted to zero always in JS

✓console.log(0 === false); //false, types are different

